PTC thermistors can be used as current-limiting devices for circuit protection, as replacements for fuses. Current through the device causes a small amount of resistive heating. If the current is large enough to generate more heat than the device can lose to its surroundings, the device heats up, causing its resistance to increase, and therefore causing even more heating. This creates a self-reinforcing effect that drives the resistance upwards, reducing the current and voltage available to the device.
PTC thermistors are used as timers in the degaussing coil circuit of most CRT displays and televisions. When the display unit is initially switched on, current flows through the thermistor and degaussing coil. The coil and thermistor are intentionally sized so that the current flow will heat the thermistor to the point that the degaussing coil shuts off in under a second. For effective degaussing, it is necessary that the magnitude of the alternating magnetic field produced by the degaussing coil decreases smoothly and continuously, rather than sharply switching off or decreasing in steps; the PTC thermistor accomplishes this naturally as it heats up.
A degaussing circuit using a PTC thermistor is simple, reliable (for its simplicity), and inexpensive.
NTC thermistors are used as resistance thermometers in low-temperature measurements of the order of 10K.
NTC thermistors can be used as inrush-current limiting devices in power supply circuits. They present a higher resistance initially which prevents large currents from flowing at turn-on, and then heat up and become much lower resistance to allow higher current flow during normal operation. These thermistors are usually much larger than measuring type thermistors, and are purposely designed for this application.
NTC thermistors are regularly used in automotive applications. For example, they monitor things like coolant temperature and/or oil temperature inside the engine and provide data to the ECU and, indirectly, to the dashboard.
NTC thermistors can be also used to monitor the temperature of an incubator. Thermistors are also commonly used in modern digital thermostats and to monitor the temperature of battery packs while charging.